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Abstract

The activator inhibitor system of space-temporal di�erential equations are
analyzed, following a formulation given by Gierer and Meinhardt. Several
steps were taken by �xed point analysis and numerical experiments.

Bifurcation surfaces in the parameter space were found. Also, the type of
the bifurcation could be identi�ed. The analytical �ndings were compared to
numerical simulations. To identify the cause of discrepancies, very detailed
analysis was done on the methods.

Then the in�uence of agent in�ow or out�ow was analyzed and a complex
bifurcation diagram is shown.

Using a stationary but spacially oscillation solution from a numerical
experiment, the local transition of the oscillators behavior can be explained.

The equations have then been studied with di�usion in a two- or three
dimensional rectangular grid, by varying up to three parameters all in one
simulation run, and evaluated using video. Typical behavior of the solution
could be visualized.

Introduction

The Gierer Meinhardt equations have been introduced in early 1990 decade,
and Meinhardt evaluated solutions suitable to generate patterns observed
in sea shells. In his book, most evaluations considered an 1-dimensional
domain evolving in time, but he also showed some examples of 2-dimensional
solutions. Parameters he used were included in a �oppy disk attached to
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the book. This work sticks to his nomenclature except for capitalizing the
variable names, and no rescaling is done, to directly compare the results for
validation.

Extensive use of the machine algebra package sympy was made to analyze
the states of the oscillator.

With vastly expanded compute power, the solution domain was expanded
to 3-dimensional space.

To get an overview on the possible solutions, some parameters of the
equations were mapped to the spacial domain. If the parameter changes of
the mapping are small, a good impression of the dynamics in the parameter
range can be expected. This was solved in transient and post processed.

Part I

The activator inhibitor oscillator

1 Formulation

In this work, the basic activator-inhibitor system was used with saturation
term for autocatalysis of the activator concentration sa, and a (small) con-
stant source of inhibitor bb.

∂

∂t
A = s

(
A2

B(1 + saA2)
+ ba

)
− raA+Da∆A (1)

∂

∂t
B = sA2 − rbB + bb +Db∆B (2)

The parameters ra and rb are the decay parameters, ba and bb are sources
and Da and Db the di�usion coe�cients for the substances A and B respec-
tively.

In the following, the local ampli�cation capability s is set constant. Mein-
hardt used it to add random perturbations like 1 + ϵ(x), while here I use
random perturbations from the initial conditions.

2 The founding oscillator

This part analyses the behavior of the basic dynamical equation, if Da = 0
and Db = 0. Also, the modifying parameters in this section are set sa = 0
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and bb = 0. Even using sympy symbolic algebra, �xed points could not be
solved for in the cases with saturation.

2.1 Linear stability analysis

Fixed points can be found from the steady state, non-di�usive equations

−Ara + s

(
A2

B
+ ba

)
= 0

A2s−Brb = 0

at Af = bas+rb
ra

and Bf = s(bas+rb)
2

r2arb
. The eigenvalues are

E1 =
2As−Bra −Brb

2B
−
√

−8A3s2 + 4A2s2 − 4ABras+ 4ABrbs+B2r2a − 2B2rarb +B2r2b
2B

and

E2 =
2As−Bra −Brb

2B
+

√
−8A3s2 + 4A2s2 − 4ABras+ 4ABrbs+B2r2a − 2B2rarb +B2r2b

2B

Substituting the �xed point, and re-arranging terms this is

Eb :=
−baras− barbs+ rarb − r2b

2 (bas+ rb)

E2
q :=

b2ar
2
as

2 − 2b2ararbs
2 + b2ar

2
bs

2 − 2bar
2
arbs− 8barar

2
bs+ 2bar

3
bs+ r2ar

2
b − 6rar

3
b + r4b

4 (b2as
2 + 2barbs+ r2b )

Instability occurs at {
Eb = 0 E2

q <= 0

Eb + Eq = 0 E2
q > 0

To visualize the bifurcation scenario, for s = 0.1 the solutions to this were
numerically evaluated over the parameter range and in this voxel �eld, the
surface to match the condition was found using a marching cubes algorithm.
Resolution chosen were 1.e9 evaluations. Also in the diagram, the solution
to E2

q = 0 was searched, to visualize where a Hopf bifurcation would turn
into a saddle-node bifurcation.
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This plot shows analytical bifurcation faces in the parameter
space. The green surface is where the instability occurs, and the red sur-
face is the transition of the eigenvalue type. The surfaces do only intersect
in the raaxis. Any instability for ba > 0 is oscillatory.

2.2 Numerical stability analysis

For a numerical con�rmation, I ran two 2d simulations (see below), where
di�usion was switched o� so that with every point in the discretized rectangle,
the pair of equations are autonomous.

To do this, I used the OpenFOAM software, to write a solver for the Mein-
hardt equations. Using this, the full framework for 3d operations is available,
from creation of computational meshes, managing parameters, solving in par-
allel, and post processing in Paraview. Here, two 2d simulations involving
4.7e6 oscillators add two numerical result planes at ba = 0.04 and ra = 0.04
into the picture:
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In this overlay plot most of the parameter space within the fold of the
green surface is also numerically unstable. Close to the bifurcation, however,
the numerical solution is stable in contrast to the analytical prediction. This
mismatch provokes a more close investigation.

So how to resolve this discrepancy? The �rst topic I look at is the numer-
ics. Do the �xed points hold over time even under rounding errors? Then,
I tested the sensitivity of the solver � even without di�usivity � to be af-
fected by high dynamics across the parameter space. The second topic is
to �nd analytical approximate solutions, either to give hints on the parame-
ter sensitivity as well on the frequency and phase relationships. Asides the
eigenvalue analysis, a harmonic balance method was tried to get amplitudes
near the bifurcation. Following up, another attempt to �nd amplitudes near
the bifurcations was attempted.

2.3 Numerical investigations

OpenFoam, as a well respected package, might be challenged by such a type of
equation, so I explored some aspects. The �rst aspect to look at is the stabil-
ity of the solver if initialized on an unstable �xed point, and how systematic
deviations a�ect the oscillations that will occur. There are no di�usion terms
involved.
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A small o�set to A(t = 0) has been added to the initial conditions set by
the �xed point analysis outlined above. Pattern structures therein are still
due to initial conditions and the asymmetrical character of the equations.
This comes clear when looking at a systematically varied initial condition in
a 2d simulation varying rb on one axis, and an initial o�set to the �xed point
of A in perpendicular in the following plot with 1440x315 oscillators are run
in parallel:

In this fishbones like image, rb is varied horizontally. The center hori-
zontal line is the unstable �xed point, and vertically spans a ± o�set on the
initial condition to A. s = 0.1, ra = 0.046, ba = 0.01. This is the situation
after 50,000 time steps. The waves move to the left. The initial o�set de-
termines the timing of the oscillations. Temporal solver method used was
�Euler�. This behavior testi�es, that the numerics does keep the unstable
�xed point (for a while). Emergence of that pattern is appended in a video1.
The very right area in the image covers the vanishing amplitudes towards
a stable solution. Also here, the onset of oscillations does not match the
analytical result.

It was also noted, that for small values of ba, the amplitudes get very high,
and so there is a large dynamical range in the mesh �elds. With that, error
correction mechanisms in the solver start to modify solution convergence,
and, although there is no di�usion from the equations, the solver itself does
some global damping. Further tests showed, that the bifurcation border
stabilizes if ba > 0.01 in the simulation domain.

The time series very close to the bifurcation point looks very harmonic:

12d/�shbones.mp4
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The oscillation shown as time series and as a Lissajous plot is at
s = 0.1, ba = 0.03134, ra = 0.04, rb = 0.031499. It could be a good idea to
try the method of harmonic balance to get the limit cycle amplitudes close
to the bifurcation for comparison to the numerical results.

2.4 Analytical investigations

To try a harmonic ansatz on the oscillator we consider

d

dt
A = s

(
A2

B
+ ba

)
− raA (3)

d

dt
B = sA2 − rbB (4)

2.4.1 The �rst ansatz

Using (3) and (4) directly, we insert the ansatz

A = A0 + A1e
iωt

B = B0 +B1e
iω(t+τ)

τ needs to model the lagging of the inhibitor behind activator concen-
tration. It comes straight forward to identify A0 = Af and B0 = Bf from
above. The trick now is to calculate Fourier coe�cients which then will be
required to be zero.

Substituting the ansatz and the �xed point into (3) and (4), we write the
integrals for the �rst order harmonic:
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0 =

2π
ω∫

0

(
−A2

1se
iωt + iA1B1ωe

iωteiωτ + A1B1rae
iωteiωτ

)
dt

+

2π
ω∫

0

(
iA1b

2
aωs

3

r2arb
+

A1b
2
as

3

rarb
+

2iA1baωs
2

r2a
+

iA1ωrbs

r2a
− A1rbs

ra
+B1rbe

iωτ

)
dt

and

0 =

2π
ω∫

0

(
−A2

1se
iωt − 2A1bas

2

ra
− 2A1rbs

ra
+ iB1ωe

iωτ +B1rbe
iωτ

)
dt

These evaluate to the set of equations

0 =
iA1b

2
aωr

4
arbs

3 + A1b
2
ar

5
arbs

3 + 2iA1baωr
4
ar

2
bs

2 + iA1ωr
4
ar

3
bs− A1r

5
ar

3
bs+B1r

6
ar

3
be

iωτ

r6ar
2
b

(5)
and

0 =
−2A1bas

2 − 2A1rbs+ iB1ωrae
iωτ +B1rarbe

iωτ

ra
(6)

Solving (6) for A1 gives a proportional dependency on B1. When substi-
tuting into (5), A1 > 0 cancels out, we see one complex equation for ω and
τ . First solving the real part

0 = − ωb2as
3 sin (ωτ)

2barbs2 + 2r2bs
+
ωrbs sin (ωτ)

2bas2 + 2rbs
+
b2as

3 cos (ωτ)

2bas2 + 2rbs
− r2bs cos (ωτ)

2bas2 + 2rbs
+rb cos (ωτ)

of it for τ , we �nd two solutions as

τ1/2 = − 2

ω
atan

(
ω (bas− rb)±

√
b2aω

2s2 + b2ar
2
bs

2 − 2baω2rbs+ 2bar3bs+ ω2r2b + r4b
rb (bas+ rb)

)
Substituting this into the imaginary part of the complex equation leaves

us with:

0 = − ω2b2as
3 sin (ωτ)

2bararbs2 + 2rar2bs
− 2ω2bas

2 sin (ωτ)

2baras2 + 2rarbs
− ω2rbs sin (ωτ)

2baras2 + 2rarbs

+
ωb2as

3 cos (ωτ)

2baras2 + 2rarbs
+

2ωbarbs
2 cos (ωτ)

2baras2 + 2rarbs
+

ωr2bs cos (ωτ)

2baras2 + 2rarbs
+ rb sin (ωτ)
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To solve this for ω is unfeasable analytically, and so it was done numeri-
cally for the parameters we wanted to investigate near the bifurcation border.
It turns out, that both of τ1/2 return the same values for ω. The result is
shown below.

But, unfortunately, we do not have amplitudes. I will spoiler it: Including
the next harmonic leaves the same problem.

2.4.2 The second ansatz

This way, before we make an ansatz, we transform (3) and (4) into a dif-
ferential equation of second order around the �xed point: A = Ã + Af and
B = B̃ + Bf . With this, (3) can be solved for B̃, and then substituted into
(4) which gives, expanded:

d2

dt2
Ã =

k0
d
dt
Ã+ k1

(
d
dt
Ã
)2

+ k2Ã+ k3Ã
d
dt
Ã+ k4Ã

(
d
dt
Ã
)2

+ k5Ã
2 + k6Ã

2 d
dt
Ã+ k7Ã

3

bas+ raÃ+ rb

with coe�cients de�ned as:
k0 := −baras−barbs+rarb−r2b , k1 := −bas+2ra−rb, k2 := −bararbs−rar

2
b ,

k3 := −2baras + r2a − 3rarb, k4 := −ra, k5 := −bar
2
as − 2r2arb, k6 := −2r2a,

k7 := −r3a.
In contrast to the �rst ansatz, there is no τ required, so the ansatz

Ã = A1 sin(ωt) is su�cient. Substituting the ansatz and expanding the
di�erentials returns another equation too long to print.

As this equation is nonlinear by a divisor, if substituting a harmonic
ansatz, no further progress in analysis is possible. But, as Ã is small, the
denominator can be expanded through Taylor's rule. The denominator is
approximated by

1

A1ra sin (ωt) + bas+ rb
≈ A2

1r
2
a sin

2 (ωt)

(bas+ rb)
3 − A1ra sin (ωt)

(bas+ rb)
2 +

1

bas+ rb

With trigonometric formulas the equation can be further expanded. In-
tegration over one oscillation period of this beast is quick, and solving for A1

returnes a formula for two amplitudes having opposite signs:

A1 = (±)
2
√

ω2bas−2ω2ra+ω2rb+bar2as+r2arb
2ω2−3rarb

(bas+ rb)

r
3
2
a

(7)

So, here we get an amplitude, but no frequency.
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2.4.3 Combining the ansatzes

So we have frequencies from the eigenvalue analysis and from the harmonic
balance on the �rst ansatz. As it is to be discussed, which of them is better
suited to approximate ω in (7), I tried both of them, �rst to compare the
curves ω(rb) and A1(rb) at s = 0.1, ba = 0.03134 and ra = 0.04. For the
amplitude diagram, numerical results are also included.

In a wide range, the frequency curves match quite well, except for the
low end, but the match is nearly perfect in the rb range where we were in-
terested in [0.03 . . . 0.035]. Using these frequencies for evaluation of (7), the
amplitudes also match, and show a drastic decline when approaching the
bifurcation. In the amplitude diagram, the same parameters were used to
run 1000 oscillators using OpenFoam, and measure the resultant amplitudes.
And as a third approach, I used a Runge-Kutta 4th order (RK45) to run the
same. Keep in mind that the analytical amplitudes are valid for small ampli-
tudes only. Unfortunately, there is no explanation still about the discrepancy
between analysis and numerics for the upper rbbound of zero crossings: the
analytical results are consistent with each other, but the OpenFoam oscilla-
tions clearly fade at lower values of rb. And with the Runge-Kutta method,
although it looks like the bifurcation point would match the analytical ap-
proach, the solver produces stable oscillatory solutions of small amplitudes
at parameters which would be expected to be stable at the �xed point. For
small values of rb, the bifurcation point is matched by all methods.

This makes it visible, that the numerical methods do create di�erent
results, and have di�erent problems on accurracy.
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Part II

Spacial considerations

3 Neighbor sources

As with signi�cant di�usion, stable structures emerge, which, from an oscil-
lator perspective, means changes to ba and bb source terms, such that a �xed
point is reached. So let us look for such �xed points.

To get an approach to neighbor cell coupling, the �rst step is to check
the in�uence of an inhibitor source, and to see how �xed points will change
due to source or sink like it would be in a stabilized structure pattern. So
we use equation (3) and add the source bb to equation (4):

d

dt
B = sA2 − rbB + bb

For bb ̸=0 there are three roots to this system of equations. Here we see,
how bb a�ects the �xed point Af from above.

Af1 = − k1
3k2

− k2
3

− k3 (8)

Af2 = − k1

3k2

(
−1

2
−

√
3i
2

) −
k2

(
−1

2
−

√
3i
2

)
3

− k3

Af3 = − k1

3k2

(
−1

2
+

√
3i
2

) −
k2

(
−1

2
+

√
3i
2

)
3

− k3 (9)

Bf1 = − s (k1 + k2 (k2 + 3k3))
2

3k2 · (3bak2s+ ra (k1 + k2 (k2 + 3k3)))

Bf2 = −
s
(
k1 + k2 ·

(
1
2
+

√
3i
2

)(
k2 ·

(
1
2
+

√
3i
2

)
− 3k3

))2
3k2 ·

(
1
2
+

√
3i
2

)(
3bak2s

(
1
2
+

√
3i
2

)
− ra

(
k1 − k2 ·

(
1
2
+

√
3i
2

)(
−k2 ·

(
1
2
+

√
3i
2

)
+ 3k3

)))
Bf3 = −

s
(
k1 + k2

(
−1

2
+

√
3i
2

)(
k2

(
−1

2
+

√
3i
2

)
+ 3k3

))2
3k2

(
−1

2
+

√
3i
2

)(
3bak2s

(
−1

2
+

√
3i
2

)
+ ra

(
k1 + k2

(
−1

2
+

√
3i
2

)(
k2

(
−1

2
+

√
3i
2

)
+ 3k3

)))
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where the coe�cents are given by

k1 := A2
f −

3bb
s

k2 :=

3

√√√√√
−A3

f +
9Afbb
2s

− 27babb
2ra

+

√
−4
(
A2

f −
3bb
s

)3
+
(
−2A3

f +
9Af bb

s
− 27babb

ra

)2
2

k3 := −Af

3

Then, as in above's linear stability analysis, the eigenvalues can be cal-
culated at the �xed points, for each of the Af 's.

e± = r ±√
q

where

r =
2As−Bra −Brb

2B
(10)

q =
−8A3s2 + 4A2s2 − 4ABras+ 4ABrbs+B2r2a − 2B2rarb +B2r2b

4B2
(11)

With this, a classi�cation of the �xed points can be done: if q < 0 , then
r = 0 determines bifurcation, while if q ≥ 0 , r +

√
q is the stability crite-

rion. To insert the �xed points (Af1, Bf1), (Af2, Bf2), (Af3, Bf3) analytically
to the eigenvalue formulas requires careful numerical evaluation thereafter.
Additional classi�cation is to check both physical concentrations A,B > 0,
and that the �xed point is in ℜ.
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This bifurcation diagram shows the A values of the three �xed points
in their dependency on bb. At bb = 0, the system is at the upper bifurcation
point in the amplitude graph in section 2.4.3. The �xed point Af3 bifurcates
from its center type stability at bb = 0 to stable (bb > 0) and unstable
(bb < 0) foci. For bb > 0.025 this root becomes conjugate complex with Af2,
and is not a physical �xed point anymore. Negative bb leave the system with
an unstable focus. This is surrounded by a limit cycle; the amplitudes are
indicated by the dotted black RK45 lines. As we have seen in the previous
section 2.4.3 with RK45, that solver tends to be unstable with the stable
focus, and the dashed lines just tighten around, not merge to the Af3 curve.

While with Af2 an additional stable node exists (dash-dot yellow), where
the activator concentration is very low, the inhibitor concentration Bf2 < 0,
and so this is also no physical solution. Anyway, the numerical solution
con�rmed that analytical �nding (dotted line). Note, that Af1 < 0 and is no
concentration. Af1 and Af2 become conjugate complex (yellow dots) for a
range bb ∈ [0 . . . 0.023], which excludes them from realization in the system.
Numerical solution does not follow that path, but the solution jumps up
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to the stable focus of Af3. Note, that the numerical solution at bb = 0 is
signi�cantly o� (and also clipped in this plot to A = −0.05) as this is a
critical point for the Af1 and Af2 to merge into a conjugate complex pair
which creates numerical dispair for bb ∈ [−10−100 . . . 0]. Further up in bb ∈
[0.023 . . . 0.025] , the stable focus of Af3 and the stable node of Af1 coexist,
and with a parameter sweep up and down around that range, hystheresis is
observed. For bb > 0.025, the only physical solution remaining is the node of
Af1.

4 Including di�usion

In this work, numerical experiments for the di�usive and dynamical equa-
tions (1) and (2) were done. As Meinhardt appended a �oppy disk in his
book, his results displayed in his �gures 2.11 and 2.12 could be qualitatively
reproduced. Also, although from the previous numerical investigations there
remaines a systematical di�erence in parts of the parameter space, Open-
Foam still provided the code base for the following.

With di�usive coupling, the mesh grid size becomes a signi�cant param-
eter for the validity of solutions: The mesh must be �ne enough to resolve
the structure gradients. Any change to the di�usion coe�cients Da > 0
and Db > 0 can be rescaled from equations (1) and (2) into length scale.
Knowing this, it is clear, that the interesting limit of vanishing di�usion can-
not be explored in the limit of small di�usion, as the grid length scale must
change accordingly to resolve structures properly. Also, the implications in
generalization from 2d to 3d are touched. This will be covered in the �rst
subsection.

Throughout this chapter, the parameters are varied spacially with low
gradients. This way, both the spacial structure generation, as well as the
parameter dependence of this can be represented in one glance. To check
on the quality of such an approach, I compared a planar section of a 3d
simulation with a 2d simulation and found good agreement. This is the
second subsection.

Parameters used in this section are, if not otherwise noted, �xed to s =
0.1, bb = 0, sa = 0.0. Generally here I use Db > Da, a known condition for
pattern formation.

4.1 Mesh grid

For a typical parameter situation, here is an image showing activator struc-
tures plus the grid at rb ∈ [0.003 . . . 0.00314] vertically, Db ∈ [0.036 . . . 0.044]
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horizontally:

This mesh grid plot shows about 7 computational cells spanning the
typical structure length. So for the given grid edge length of 1, Da and Db

are kept larger than 0.01.

4.2 Parameter to space consistency

A 3d simulation was run on a 480 x 480 x 480 cell grid for 8500 time steps. So
the solution is not fully stabilized with its static and dynamical structures.
Still the main features can be watched stabilizing in videos. This simulation
spanned ba ∈ [0.002 . . . 0.026], bb ∈ [0 . . . 0.00015] and rb ∈ [0.01 . . . 0.045].

To check whether a 2d simulation has the same results, ra = 0.03 the
images and use the same ranges as the 3d case.

2d (left) versus 3d (right). Both cases are still evolving, especially the 3d
case which was limited to only 8500 time steps. In both cases, the structure
front still expands towards the lower right corner.
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4.3 Oscillator perspective on di�usion

If a spacial simulation is available, the di�usion terms in (1) and (2) can be
calculated from the solution. With this reconstructed data, we can look at the
oscillator state using the classi�cation described in paragraph 3. Now look
at a situation, where the solution shows stable, dynamical structures. I pick
one from the intersection of the two simulated planes introduced in section
2.2 at rb = 0.025 and di�usion coe�cients of Da = 5 and Db = 50, which
gives a very smooth spacial wave along a oscillator chain. From OpenFoam,
we get A(x) and B(x), and from that, ∂2A

∂x2 and
∂2B
∂x2 can be calculated. With

the known parameters, the concentrations A and B can be calculated from
the roots (8) and (9). As long as |ℑ(Af3) |> 0, ℜ(Af1), else Af3 will be used,
which is in ℜ. Here is a comparison of the reconstruction versus OpenFoam
in a phase space:

This can then be used to check the status of the stationary oscillator.
The same spacial oscillation can now be colored by the eigenvalues of the
�xed point, the oscillators are:
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The A amplitude is center colored by the real part r (or r+
√
q if q > 0)

and surrounded by the discriminant q of the eigenvalues in formulas (10) and
(11) respectively. Oscillation frequencies slow down on low activity, as q≈ ω2

if it is negative. While r indicates stability for lower values of A, at high
values the system becomes unstable. q indicates only focal type.

4.4 Di�usion e�ect

In 4.3 we analyzed a steady state solution at a parameter set, which would
oscillate autonomously if a cell would be decoupled. This was with a ratio of
the di�usion coe�cients of Da/Db = 5/50 where the spacial structure freezes.
With lower ratio of Da/Db = 5/20, the solution is, in contrast, a synchronized
oscillation:

So, using the slowly varying parameters method is used to display the
transition from homogeneous oscillation to steady state patterns. A 2d sim-
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ulation is varying Db between those parameter points, while giving room for
the spacial structures on a x coordinate. This gives the following snapshot:

On the left, what appears to be homogeneous, does oscillate in sync. The
dots to the right are localized. Around Db ≃ 30, the structures start to show
up; although the minima and maxima stay at these positions, they still are
like swimming on the oscillation as to the left. The dots up to Db ≃ 35 also
still oscillate, but the surrounding low concentration areas become constant.

Running a series of 1d simulations gives a sharper distinction between
those behavioral regimes, and close to that bifurcation point, in a still slightly
oscillating but structured situation at Db = 38, we �rst need to get some esti-
mation for the driving laplace calculation from the solution - as it oscillates,
it has not the values as in the unstable �xed point. Now close to the fading
of instability, oscillation amplitudes are small and nearly harmonic (see 2.3).
So the averaging ansatz for the external driving �uxes to apply the method
layed out in paragraph 4.3 is

sba ≈ sba +Da
ω

2π

2π
ω∫

0

∂2A

∂x2
dt (12)

bb ≈ Db
ω

2π

2π
ω∫

0

∂2B

∂x2
dt (13)

At Db = 38, the reconstructed solution is still close to the time averaged
solution:
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With this accepted, the classi�ed structure looks like:

In contrast to the analysis of the situation at Db = 50, here we see a
switch in stability (r = 0), where the oscillators states become unstable foci
at high amplitudes and stable focus at low amplitudes A. This explains
the oscillating spots in a seemingly constant inhibited area. Very small dis-
turbances get across the weak stable foci, which is su�cient to synchronize
spot oscillations. Note, that, although q is negative, it comes very close to 0
where, at low A, stable attractors were also found at Db = 50 in OpenFoam.
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Part III

Spacial pattern dynamics

As mentioned, mapping slowly varying parameters to space, it is possible to
simulate millions of oscillators �in parallel� with OpenFoam CFD software.
This provides a convenient way to oversee a great range of dynamics in one
plot. Notice, that in these studies, the di�usion is selected much smaller, so
that the structures again match the mesh study in paragraph 4.1. In this
part, some studies are reviewed.

5 Inhibitor decay and di�usion

In the following 2d analysis, the control parameters are rb ∈ [0.008 . . . 0.045]
and Db ∈ [1 . . . 4]. Fixed parameters were ra = 0.04, ba = 0.04, bb = 0, Da =
0.03 and s = 0.1. The transient solution regimes develop quite slowly due
to slow changes imposed by the di�usion, starting from an initial condition
scattered close to the �xed point. Anyway, after long time, the parameter
ranges leading to di�erent solution behavior stabilize. Here is the situation
in a 294x196 grid:

The left column of these plots shows the solution of A and B at time step
1077000, the middle column shows the �xed points reconstructed from the
Laplacian of the solution, and the right column shows the frequency and the
stability criterion as de�ned in section 3. From that, we see that the centers
of the spots are in unstable, oscillating mode, while the separating area is
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of stable character with very low frequency, and also a small region of node
attractors exist in the higher Db and rb range, marked in the frequency plot.

At low rb = 0.01 and low Db = 1.5, the system exhibits oscillatory behav-
ior with a period of approximately 305 time steps or ω ∼ 0.02. Oscillations
continue to exist between the spots, and generate background waves propa-
gating through between the spots up to approximately Db ≈ 3. Here we see
an example of a still moving spot close to the low Db oscillatory region after
1e6 time steps to relax from the initial transient:

The violet marked cell at rb = 0.017 and Db = 2.13 in the 2d solution
image is used to monitor 8500 time steps and plot them over time. During
that time, the spot moves towards the upper right, so that the marked cell
is �nally on the opposite side of the spot. As expected from the previous
analysis using the stability criterion, oscillation amplitudes are higher in the
center of the spot as in between.

Anyway, in oscillating regions, the solution is not at the oscillators �xed
point and the reconstruction comes with errors. A method to get a better
approximation of the �xed point of the solution can be to use time averaged
simulation results, while amplitudes are small and nearly harmonic as in
section 2.3.

6 Parameter studies 2d

Several 2d numerical parameter study simulations were done on a 1920x1080
grid. The images are all colored by A and clipped to the range [0 . . . 2].
This tables lists the studies, referring each to a set of base parameters de-
�ned thereafter. The �rst parameter range extends vertically, the second
horizontally.
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File Parameter ranges Base

BA_DB ba ∈ [0.002 . . . 0.04],Db ∈
[0.01 . . . 0.1]

1

RA_RB ra ∈ [0.0005 . . . 0.05],
rb ∈ [0.0005 . . . 0.05]

4

RB_BA rb ∈ [0.01 . . . 0.045],
ba ∈ [0.002 . . . 0.04]

1

RB_S rb ∈ [0.01 . . . 0.045],
s ∈ [0.01 . . . 0.1]

1

RB_SA rb ∈ [0.01 . . . 0.045],
sa ∈ [0 . . . 0.2]

1

RB_DB rb ∈ [0.01 . . . 0.045],
Db ∈ [0.05 . . . 0.4]

2

S_DB s ∈ [0.01 . . . 0.1],
Db ∈ [0.01 . . . 0.1]

1

RB_DADB rb ∈ [0.01 . . . 0.045],
Da ∈ [0 . . . 0.1], Db = 8Da

1

The RB_DADB study varied the di�usion parameters in constant rela-
tion, corresponding to rescaling the length in the equations 1 and 2. Also
in this case, di�usion was distributed on the X-axis in the third power
Dx ∼ (x/857)3 in a 857x500 grid for better visibility.

The base parameter sets are de�ned as follows:
Base ba bb ra rb s sa Da Db

1 0.01 0 0.046 0.03 0.01 0.1 0.01 0.04
2 0.01 0 0.046 0.03 0.01 0.1 0.04 0.2
4 0.04 0 0.04 0.03 0.1 0 0 0

The images and videos are in the appendix �le, 2d subfolder.

7 Parameter studies 3d

Three 3d numerical parameter simulations were done. Because on computa-
tional limitations, the videos below show the development of the transient,
although the situations shown are close to the �nal states. They are docu-
mented as mp4 video �les as follows:

22



Video Parameters Description

bubbleImpressions rb,Db, bb

Camera �ight around the 480x480x480

voxel cube. Iso-surfaces @ A = 0.8,

colored by B. Boundary colored by A.

coastaledge rb,Db, bb

See how �at the cut-o� by bb is.
Besides the wall, the large waves
approach the wall, in the far
background, instabilities at very low
rbare visible.

coast rb,Db, bb
View on the backside of the wall,
where the the large waves approach.

layers2 rb,Db, bb

Bubbles for lower rb values, viewed
from the low bb side. As the system
destabilizes for Db values close to Da,
the amplitudes of concentration can
become very high, and so some red
bubbles mix into the view. This video
also displays the �at wall.

layers rb,Db, bb
Bubbles for lower rb values, viewed
from the high Dbside.

varycontour1 rb,Db, bb

View the wall creeping while
increasing the iso-value for clipping A.
So, although growing, amplitudes in
the wall region do not reach the iso
value, and vanish to allow looking at
the dynamics for lower bb and rb.

majagrow rb,Db, bb
View the creeping growth of the wall
with emphasising by colors of B.

cube1 rb, Db, sa

Outer surface of the cubic parameter
space colored by A. Db in X, rb in Y
and sa in Z direction. (420x420x420
voxel)

iso5_greyred rb, Db, sa

Camera orbit around the parameter
cube, iso surfaces @ A = 0.5 , colored
by B.

boiling_below rb, Db, sa

View from high rb perspective.
Compare to the waves approching the
wall as in coast.mp4

7900iso08 rb, Db, s

Here, the di�usion values have both
multiplied by 40 against the ones
before. The structure sizes have been
enlarged, like scaling of the equations
predict. The iso surface is created at
A = 0.8. The camera orbits around
the parameter space.

redBubblesFix rb, Db, s
Fixed view from high s perspective,
iso surface at A = 0.5.

23



The images and videos are in the appendix �le, 3d subfolder.

Conclusion

8 Too long, didn't read

With analytical techniques the bifurcation scenarios of the activator inhibitor
oscillator could be displayed. There are various nonlinear phenomena includ-
ing stable and unstable foci, nodes and limit cycles, partially coexisting. By
using these formulas, the analytical oscillator can be driven by constant in-
�ow/out�ow of neighboring oscillators. A classi�cation tool was built from
there to analyze spacially oscillating but stationary simulation results. The
transition to the synchronized temporal oscillation was explained. Behavior
of dynamical solutions in larger scale 2d and 3d simulations can be under-
stood by characterizing local oscillator states.

9 Limitation

The synchronized solutions cannot be analyzed with the method explained
here. Numerical experiments, however, are the remaining chance to gain
understanding.

10 Outlook

As the 2d and 3d simulations show more types of behavior than analyzed
so far, more distinct parameter points should be analyzed. Especially the
hystheresis is a phenomenon, which might help in oscillatory computing.

In the sense of information propagation within such a self-organized medium,
may it be planar or volumetric, periodic sources at de�ned points could be
analyzed for transfer functions to some output oscillators.

In terms of learning, anisotropic and asymmetric di�usion terms other
oscillation capabilities of active media, like other ideas of Meinhardt, namely
additional agents like nutrition or catalysators can be expected as useful.
To put the oscillators in useful states by selecting characteristic parameters
like di�erent neuron types, this work gives a basic insight for �nding good
prototypes.
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